The Rich Transcription 2009 Speech-To-Text (STT) and Speaker Attributed STT (SASTT) Results

2009 Rich Transcription Evaluation Workshop

May 28-29, 2009

Florida Institute of Technology

Melbourne, FL

Jérôme Ajot & Jonathan Fiscus

Speech-To-Text (STT)

- Task:
 - Transcribe the spoken words
- Domain:
 - Conference Room (confmtg)
- Primary input condition:
 - Multiple Distant Microphones (MDM)
- Participating sites:
 - AMI, FIT, SRI/ICSI

STT Evaluation Protocol

- Step 1: Transcript normalization
 - Motivation: Allow acceptable alternative transcripts
 - Differentiating *gonna* from *going to* is sometimes difficult
 - Implementation: Text filtering rules applied to both the reference and system transcript
- Step 2: Overlapping Speech Text Alignment
 - Motivation: Identify and classify errors by finding an optimal one-to-one mapping of reference to system words
- Step 3: Error computation
 - Primary Metric: Word Error Rate (WER):

$$100 \cdot \frac{N_{\textit{Substitutions}} + N_{\textit{Insertions}} + N_{\textit{Deletions}}}{N_{\textit{referenceWords}}}$$

- 0% is best possible score, more than 100% possible

Overlapping Speech Text Alignments

- Solution: Multi-dimensional text alignments produce the 1:1 mapping
 - Each speaker (reference and system) is a dimension in a Levenshtein Edit Distance matrix
 - Alignment engine implemented within ASCLITE
- Challenge: Computational complexity limits
 - Search space limited by applying heuristics
 - Pre-segmenting the reference transcript into "Segment Groups"
 - Heuristic pruning, application constraints, and memory compression
- Net Effect:
 - More evaluable data
 - Faster scoring time

Segment Groups

Divide the reference transcript segments into independent units based on segment times

- Smaller overlap factor → faster alignment times
- Overlap factors used for conditional scoring

Multi-Dimensional Alignment Visualization for STT

Multi-Dimensional Alignment Visualization for STT

4 Dimensional Alignment labeled as Overlap = 3

0.12 MB to align

STT Primary System Results

IHM Condition

- 3 STT IHM submission
- FIT is a first time participant

STT Primary System Results

Distant Microphone (Overlap ≤ 4)

- Distant microphone conditions increase the difficulty
- SRIICSI is able to make use of distant microphones

Historical STT Performance

IHM Condition

- IHM condition was challenging for AMI
- SRIICSI has a stable performance over the last 3 evaluations

Historical STT Performance

Distant Microphones

- AMI progressed over the last 3 evaluations for MDM
- Results are inconclusive for SRIICSI

NIST STT Benchmark Test History – May. '09

Speaker Attributed STT (SASTT)

- Task:
 - Transcribe the spoken words and associate them with a speaker
 - Merge of STT and Speaker Diarization systems
- Domain:
 - Conference Room (confmtg)
- Primary input condition:
 - Multiple Distant Mics (MDM)
- Participating sites:
 - AMI, SRI/ICSI

SASTT Evaluation Protocol

- Step 1: Transcript normalization
 - Identical to STT
- Step 2: Speaker Alignment
 - Define what is "correct" speaker
 - A one-to-one mapping between reference and system speakers
 - Same time-time based scoring method as used for the Speaker Diarization Task (SPKR)
 - Except system segments derived from recognized word locations
- Step 3: Text Alignment
 - A one-to-one mapping is found between the reference and system transcripts
 - Changes to mapping requirements
 - Correct: matching words and mapped reference/system speaker
 - Speaker Substitution: correct words and non-mapped reference/system speakers
 - Substitution: non-matching texts
- Step 4: Error computation
 - Primary Metric: Speaker Attributed Word Error Rate (SWER):

$$100 \cdot \frac{N_{\textit{Substitutions}} + N_{\textit{Insertions}} + N_{\textit{Deletions}} + N_{\textit{Spea} \, \text{ker} \, \textit{Substitution}}}{N_{\textit{referenceWords}}}$$

0% is best possible score, more than 100% possible

Multi-Dimensional Alignment Visualization for SASTT

6 Dimensional Alignment labeled as Overlap = 3

2.12 MB to align \rightarrow 18 times bigger than STT

SASTT Results (≤3 speakers)

• As for STT, distant microphones are challenging conditions

SASTT Results (≤ 3 speakers)

- Compared to last evaluation AMI progresses in the MDM condition
- But the test set was still chalenging

Test Sets

Collection Sites

• Little difference this year for STT – MDM by collection site

Test Sets

Meetings Variability

- Diversity in the meeting dialect
 - EDI and IDI meetings have only non-native American speakers
 - NIST meetings have only native American speakers
- Variability in the NIST meeting

Test SetsNIST_20080201-1405

- High overlap factor meeting
- All speakers have high deletion rate: 25-60% (average: 20%)
- Speaker 256 and 257 have a high rate of Speaker Substitution Error: 23-27% (average: 5%)

Conclusions

- RT-09 Results
 - No noticeable improvements
- Challenging test sets
- Future evaluations Data Set
 - More diverse test set
 - Small segments
 - More meetings
 - Progress test set
 - Sequestering data
- Focus on core technology challenges
 - Overlapping speech
 - Distant microphones

